Characterize Porous Materials
نویسندگان
چکیده
■ Abstract Beam-based positron annihilation spectroscopy (PAS) is a powerful porosimetry technique with broad applicability in the characterization of nanoporous thin films, especially insulators. Pore sizes and distributions in the 0.3–30 nm range are nondestructively determined with only the implantation of low-energy positrons from a table-top beam. Depth-profiling with PAS has proven to be an ideal way to measure the interconnection length of pores, search for depth-dependent inhomogeneities or damage in the pore structure, and explore porosity hidden beneath dense layers or diffusion barriers. The capability of PAS is rapidly maturing as new intense positron beams around the globe spawn more accessible PAS facilities. After a short primer on the physics of positrons in insulators, the various probe techniques of PAS are briefly summarized, followed by a more detailed discussion of the wide range of nanoporous film parameters that PAS can characterize.
منابع مشابه
Elastic characterization of porous bone by ultrasonic method through Lamb waves
The object of this research is to characterize the porous bones by an ultrasonic method using Lamb waves. In recent years, the characterization of such materials has attracted many authors and takes a perfect place in the field of medicine. It requires the development of more efficient technology for getting the necessary quality and security. This paper aims to exploits the dispersion curves o...
متن کاملCharacterization and comparison of pore landscapes in crystalline porous materials.
Crystalline porous materials have many applications, including catalysis and separations. Identifying suitable materials for a given application can be achieved by screening material databases. Such a screening requires automated high-throughput analysis tools that characterize and represent pore landscapes with descriptors, which can be compared using similarity measures in order to select, gr...
متن کاملHigh-Throughput Characterization of Porous Materials Using Graphics Processing Units.
We have developed a high-throughput graphics processing unit (GPU) code that can characterize a large database of crystalline porous materials. In our algorithm, the GPU is utilized to accelerate energy grid calculations, where the grid values represent interactions (i.e., Lennard-Jones + Coulomb potentials) between gas molecules (i.e., CH4 and CO2) and materials' framework atoms. Using a paral...
متن کاملSimultaneous Contact Sensing and Characterizing of Mechanical and Dynamic Heat Transfer Properties of Porous Polymeric Materials
Porous polymeric materials, such as textile fabrics, are elastic and widely used in our daily life for garment and household products. The mechanical and dynamic heat transfer properties of porous polymeric materials, which describe the sensations during the contact process between porous polymeric materials and parts of the human body, such as the hand, primarily influence comfort sensations a...
متن کاملConstrained equilibrium as a tool for characterization of deformable porous media.
A new method for characterizing the deformable porous materials with noncritical adsorption probes is proposed. The mechanism is based on driving the adsorbate through a sequence of constrained equilibrium states with the insertion isotherms forming a pseudocritical point or a van der Waals-type loop. In the framework of a perturbation theory and Monte Carlo simulations we have found a link bet...
متن کاملPerfluorinated Compounds as Test Media for Porous Membranes
We suggest a failure-free method of porous membranes characterization that gives the researcher the opportunity to compare and characterize properties of any porous membrane. This proposal is supported by an investigation of eight membranes made of different organic and inorganic materials, with nine different perfluorinated compounds. It was found that aromatic compounds, perfluorobenzene, and...
متن کامل